10 research outputs found

    Problems and applications of Discrete and Computational Geometry concerning graphs, polygons, and points in the plane

    Get PDF
    Esta tesistratasobreproblemasyaplicacionesdelageometríadiscretay computacional enelplano,relacionadosconpolígonos,conjuntosdepuntos y grafos. Después deunprimercapítulointroductorio,enelcapítulo 2 estudiamos una generalizacióndeunfamosoproblemadevisibilidadenelámbitodela O-convexidad. Dadounconjuntodeorientaciones(ángulos) O, decimosque una curvaes O-convexa si suintersecciónconcualquierrectaparalelaauna orientaciónde O es conexa.Cuando O = {0◦, 90◦}, nosencontramosenel caso delaortoconvexidad,consideradodeespecialrelevancia.El O-núcleo de unpolígonoeselconjuntodepuntosdelmismoquepuedenserconectados con cualquierotropuntodelpolígonomedianteunacurva O-convexa.En este trabajoobtenemos,para O = {0◦} y O = {0◦, 90◦}, unalgoritmopara calcular ymantenerel O-núcleodeunpolígonoconformeelconjuntode orientaciones O rota. Dichoalgoritmoproporciona,además,losángulosde rotación paralosqueel O-núcleotieneáreayperímetromáximos. En elcapítulo 3 consideramos unaversiónbicromáticadeunproblema combinatorioplanteadoporNeumann-LarayUrrutia.Enconcreto,de- mostramos quetodoconjuntode n puntosazulesy n puntosrojosenel plano contieneunparbicromáticodepuntostalquetodocírculoquelos tenga ensufronteracontieneensuinterioralmenos n(1− 1 √2 )−o(n) puntos del conjunto.Esteproblemaestáfuertementeligadoalcálculodelosdiagra- mas deVoronoideordensuperiordelconjuntodepuntos,pueslasaristas de estosdiagramascontienenprecisamentetodosloscentrosdeloscírculos que pasanpordospuntosdelconjunto.Porello,nuestralíneadetrabajo actual enesteproblemaconsisteenexplorarestaconexiónrealizandoun estudio detalladodelaspropiedadesdelosdiagramasdeVoronoideorden superior. En loscapítulos 4 y 5, planteamosdosaplicacionesdelateoríadegrafos 6 7 al análisissensorialyalcontroldeltráficoaéreo,respectivamente.Enel primer caso,presentamosunnuevométodoquecombinatécnicasestadísti- cas ygeométricasparaanalizarlasopinionesdelosconsumidores,recogidas a travésdemapeoproyectivo.Estemétodoesunavariacióndelmétodo SensoGraph ypretendecapturarlaesenciadelmapeoproyectivomediante el cálculodelasdistanciaseuclídeasentrelosparesdemuestrasysunor- malización enelintervalo [0, 1]. Acontinuación,aplicamoselmétodoaun ejemplo prácticoycomparamossusresultadosconlosobtenidosmediante métodosclásicosdeanálisissensorialsobreelmismoconjuntodedatos. En elsegundocaso,utilizamoslatécnicadelespectro-coloreadodegrafos para plantearunmodelodecontroldeltráficoaéreoquepretendeoptimizar el consumodecombustibledelosavionesalmismotiempoqueseevitan colisiones entreellos.This thesisdealswithproblemsandapplicationsofdiscreteandcomputa- tional geometryintheplane,concerningpolygons,pointsets,andgraphs. After afirstintroductorychapter,inChapter 2 westudyageneraliza- tion ofafamousvisibilityproblemintheframeworkof O-convexity. Given a setoforientations(angles) O, wesaythatacurveis O-convex if itsin- tersection withanylineparalleltoanorientationin O is connected.When O = {0◦, 90◦}, wefindourselvesinthecaseoforthoconvexity,consideredof specialrelevance.The O-kernel of apolygonisthesubsetofpointsofthe polygonthatcanbeconnectedtoanyotherpointofthepolygonwithan O-convexcurve.Inthisworkweobtain,for O = {0◦} and O = {0◦, 90◦}, an algorithm tocomputeandmaintainthe O-kernelofapolygonasthesetof orientations O rotates. Thisalgorithmalsoprovidestheanglesofrotation that maximizetheareaandperimeterofthe O-kernel. In Chapter 3, weconsiderabichromaticversionofacombinatorialprob- lem posedbyNeumann-LaraandUrrutia.Specifically,weprovethatevery set of n blue and n red pointsintheplanecontainsabichromaticpairof pointssuchthateverycirclehavingthemonitsboundarycontainsatleast n(1 − 1 √2 ) − o(n) pointsofthesetinitsinterior.Thisproblemisclosely related toobtainingthehigherorderVoronoidiagramsofthepointset.The edges ofthesediagramscontain,precisely,allthecentersofthecirclesthat pass throughtwopointsoftheset.Therefore,ourcurrentlineofresearch on thisproblemconsistsonexploringthisconnectionbystudyingindetail the propertiesofhigherorderVoronoidiagrams. In Chapters 4 and 5, weconsidertwoapplicationsofgraphtheoryto sensory analysisandairtrafficmanagement,respectively.Inthefirstcase, weintroduceanewmethodwhichcombinesgeometricandstatisticaltech- niques toanalyzeconsumeropinions,collectedthroughprojectivemapping. This methodisavariationofthemethodSensoGraph.Itaimstocapture 4 5 the essenceofprojectivemappingbycomputingtheEcuclideandistances betweenpairsofsamplesandnormalizingthemtotheinterval [0, 1]. Weap- ply themethodtoareal-lifescenarioandcompareitsperformancewiththe performanceofclassicmethodsofsensoryanalysisoverthesamedataset. In thesecondcase,weusetheSpectrumGraphColoringtechniquetopro- poseamodelforairtrafficmanagementthataimstooptimizetheamount of fuelusedbytheairplanes,whileavoidingcollisionsbetweenthem

    Geometric and statistical techniques for projective mapping of chocolate chip cookies with a large number of consumers

    Full text link
    The so-called rapid sensory methods have proved to be useful for the sensory study of foods by different types of panels, from trained assessors to unexperienced consumers. Data from these methods have been traditionally analyzed using statistical techniques, with some recent works proposing the use of geometric techniques and graph theory. The present work aims to deepen this line of research introducing a new method, mixing tools from statistics and graph theory, for the analysis of data from Projective Mapping. In addition, a large number of n=349 unexperienced consumers is considered for the first time in Projective Mapping, evaluating nine commercial chocolate chips cookies which include a blind duplicate of a multinational best-selling brand and seven private labels. The data obtained are processed using the standard statistical technique Multiple Factor Analysis (MFA), the recently appeared geometric method SensoGraph using Gabriel clustering, and the novel variant introduced here which is based on the pairwise distances between samples. All methods provide the same groups of samples, with the blind duplicates appearing close together. Finally, the stability of the results is studied using bootstrapping and the RV and Mantel coefficients. The results suggest that, even for unexperienced consumers, highly stable results can be achieved for MFA and SensoGraph when considering a large enough number of assessors, around 200 for the consensus map of MFA or the global similarity matrix of SensoGraph.Comment: 21 pages, 16 figures, 1 tabl

    Generalized kernels of polygons under rotation

    Get PDF
    Given a set O\mathcal{O} of kk orientations in the plane, two points inside a simple polygon PP O\mathcal{O}-see each other if there is an O\mathcal{O}-staircase contained in PP that connects them. The O\mathcal{O}-kernel of PP is the subset of points which O\mathcal{O}-see all the other points in PP. This work initiates the study of the computation and maintenance of the O\mathcal{O}-Kernel{\rm Kernel} of a polygon PP as we rotate the set O\mathcal{O} by an angle θ\theta, denoted O\mathcal{O}-Kernelθ(P){\rm Kernel}_{\theta}(P). In particular, we design efficient algorithms for (i) computing and maintaining {0o}\{0^{o}\}-Kernelθ(P){\rm Kernel}_{\theta}(P) while θ\theta varies in [π2,π2)[-\frac{\pi}{2},\frac{\pi}{2}), obtaining the angular intervals where the {0o}\{0^{o}\}-Kernelθ(P){\rm Kernel}_{\theta}(P) is not empty and (ii) for orthogonal polygons PP, computing the orientation θ[0,π2)\theta\in[0, \frac{\pi}{2}) such that the area and/or the perimeter of the {0o,90o}\{0^{o},90^{o}\}-Kernelθ(P){\rm Kernel}_{\theta}(P) are maximum or minimum. These results extend previous works by Gewali, Palios, Rawlins, Schuierer, and Wood.Comment: 12 pages, 4 figures, a version omitting some proofs appeared at the 34th European Workshop on Computational Geometry (EuroCG 2018

    A connection between Inverse Problems and Nonstandard Analysis

    No full text
    Nonstandard analysis was born in the decade of 1960 an attempt to give a formal context to the Leibniz approach to differential calculus, in particular in order to provide a rigorous foundation to the notions of infinitesimal and infinite quantities in analysis. The theory soon found further nontrivial applications in several areas of mathematics including Analysis, Ergodic Theory, Geometric Group Theory, Probability Theory, Number Theory or Combinatorics. In this context, we find a remarkable proof by Renling Jin in 2007 of an extension of a result from Additive Number Theory, the so-called Freiman's Little Theorem, proving a longstanding conjecture for which the only known proof uses tools of nonstandard analysis. The objective of this master thesis is to give an account of this highly nontrivial proof by providing the necessary background on nonstandard analysis, with the aim of making the proof accessible to a wider readership outside the nonstandard analysis community

    A connection between Inverse Problems and Nonstandard Analysis

    No full text
    Nonstandard analysis was born in the decade of 1960 an attempt to give a formal context to the Leibniz approach to differential calculus, in particular in order to provide a rigorous foundation to the notions of infinitesimal and infinite quantities in analysis. The theory soon found further nontrivial applications in several areas of mathematics including Analysis, Ergodic Theory, Geometric Group Theory, Probability Theory, Number Theory or Combinatorics. In this context, we find a remarkable proof by Renling Jin in 2007 of an extension of a result from Additive Number Theory, the so-called Freiman's Little Theorem, proving a longstanding conjecture for which the only known proof uses tools of nonstandard analysis. The objective of this master thesis is to give an account of this highly nontrivial proof by providing the necessary background on nonstandard analysis, with the aim of making the proof accessible to a wider readership outside the nonstandard analysis community

    On circles enclosing many points

    No full text
    We prove that every set of n red and n blue points in the plane contains a red and a blue point such that every circle through them encloses at least points of the set. This is a two-colored version of a problem posed by Neumann-Lara and Urrutia. We also show that every set S of n points contains two points such that every circle passing through them encloses at most points of S. The proofs make use of properties of higher order Voronoi diagrams, in the spirit of the work of Edelsbrunner, Hasan, Seidel and Shen on this topic. Closely related, we also study the number of collinear edges in higher order Voronoi diagrams and present several constructions.Peer ReviewedPostprint (author's final draft

    The edge labeling of higher order Voronoi diagrams

    No full text
    We present an edge labeling of order-k Voronoi diagrams, Vk(S), of point sets S in the plane, and study properties of the regions defined by them. Among them, we show that Vk(S) has a small orientable cycle and path double cover, and we identify configurations that cannot appear in V3(S).Postprint (published version

    The edge labeling of higher order Voronoi diagrams

    No full text
    We present an edge labeling of order-k Voronoi diagrams, Vk(S), of point sets S in the plane, and study properties of the regions defined by them. Among them, we show that Vk(S) has a small orientable cycle and path double cover, and we identify configurations that cannot appear in V3(S).Postprint (published version

    Flight level assignment using graph coloring

    No full text
    This paper models an air traffic optimization problem where, on the one hand, flight operators seek to minimize fuel consumption flying at optimal cruise levels and, on the other hand, air traffic managers aim to keep intersecting airways at as distant as possible flight levels. We study such a problem as a factorized optimization, which is addressed through a spectrum graph coloring model, evaluating the effect that safety constraints have on fuel consumption, and comparing different heuristic approaches for allocation
    corecore